Preparation and verification of tensor network states

نویسندگان

چکیده

We consider a family of tensor network states defined on regular lattices that come with natural definition an adiabatic path to prepare them. This comprises relevant classes states, such as injective Matrix Product and Projected Entangled-Pair States, some corresponding classical spin models. show how uniform lower bounds the gap parent Hamiltonian along trajectory can be efficiently computed using semi-definite programming. allows one check whether preparation performed scalable effort. also derive set observables whose expectation values easily determined form complete set, in sense they uniquely characterize state. identify subset those which if has access quantum state local measurements, analyze used verification procedures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categorical Tensor Network States

Jacob D. Biamonte, Stephen R. Clark and Dieter Jaksch Oxford University Computing Laboratory, Parks Road Oxford, OX1 3QD, United Kingdom Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore Keble College, Parks Road, University of Oxford, Oxford OX1 3PG, United Kingdom Clarendon Laboratory, Department of Physics, University of Oxford,...

متن کامل

Lectures on Tensor Network States

1 1) The most updated version of these notes will be kept on the webpage listed above. Feedback welcome. Other University webpages storing a copy of these notes will not be updated.

متن کامل

Neural network representation of tensor network and chiral states

We study the representational power of a Boltzmann machine (a type of neural network) in quantum many-body systems. We prove that any (local) tensor network state has a (local) neural network representation. The construction is almost optimal in the sense that the number of parameters in the neural network representation is almost linear in the number of nonzero parameters in the tensor network...

متن کامل

Second renormalization of tensor-network states.

We propose a second renormalization group method to handle the tensor-network states or models. This method dramatically reduces the truncation error of the tensor renormalization group. It allows physical quantities of classical tensor-network models or tensor-network ground states of quantum systems to be accurately and efficiently determined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review research

سال: 2022

ISSN: ['2643-1564']

DOI: https://doi.org/10.1103/physrevresearch.4.023161